博客
关于我
泛统计理论初探——常见正则化技巧简介
阅读量:194 次
发布时间:2019-02-28

本文共 732 字,大约阅读时间需要 2 分钟。

数据挖掘中的正则化方法简介

正则化方法是数据挖掘和神经网络中常用的一种技术,主要用于防止模型过拟合。过拟合是指模型在训练集表现优异,但在测试集表现较差的现象。正则化通过引入惩罚项,使得模型更倾向于泛化能力强的解,而非仅仅适合训练集。

常见正则化方法

目前最常用的正则化方法包括L1正则化、L2正则化和Dropout方法。这些方法各有特点,适用于不同的场景。

L1正则化

L1正则化(Lasso Regression)是一种通过将权重绝对值的和作为惩罚项来实现的正则化方法。其主要特点是能有效地进行特征选择,因为它会将不重要的参数压缩为零。

L2正则化

L2正则化(Ridge Regression)则是通过将权重的平方和作为惩罚项实现的。与L1正则化相比,L2正则化更倾向于平滑地减小不必要的权重值,而不是直接将其压缩为零。

正则化方法的作用

正则化方法的核心目标是通过适当约束模型参数,使得模型在训练集和测试集之间的泛化能力得到提升。L1和L2正则化通过不同机制实现这一目标。

Dropout方法

Dropout是一种防止模型过拟合的策略,常用于神经网络训练中。其核心思想是随机丢弃一定比例的神经元,使得模型在训练过程中对某些神经元的丢弃产生适应性。这一方法不仅起到正则化的作用,还通过集成学习的思想提升了模型的泛化能力。

选择正则化方法的考虑

在实际应用中,选择哪种正则化方法需要根据具体需求来决定。L2正则化因其可导性和平滑性,常被优先选择。而L1正则化则在特征选择方面表现优异。对于复杂模型,结合L1和L2正则化的弹性正则化方法也是一种不错的选择。

正则化方法为模型提供了防止过拟合的重要手段。在实际应用中,理解和合理应用这些方法有助于提升模型的泛化能力。

转载地址:http://doyi.baihongyu.com/

你可能感兴趣的文章
npm发布自己的组件UI包(详细步骤,图文并茂)
查看>>
npm和package.json那些不为常人所知的小秘密
查看>>
npm和yarn清理缓存命令
查看>>
npm和yarn的使用对比
查看>>
npm如何清空缓存并重新打包?
查看>>
npm学习(十一)之package-lock.json
查看>>
npm安装 出现 npm ERR! code ETIMEDOUT npm ERR! syscall connect npm ERR! errno ETIMEDOUT npm ERR! 解决方法
查看>>
npm安装crypto-js 如何安装crypto-js, python爬虫安装加解密插件 找不到模块crypto-js python报错解决丢失crypto-js模块
查看>>
npm安装教程
查看>>
npm报错Cannot find module ‘webpack‘ Require stack
查看>>
npm报错Failed at the node-sass@4.14.1 postinstall script
查看>>
npm报错fatal: Could not read from remote repository
查看>>
npm报错File to import not found or unreadable: @/assets/styles/global.scss.
查看>>
npm报错TypeError: this.getOptions is not a function
查看>>
npm报错unable to access ‘https://github.com/sohee-lee7/Squire.git/‘
查看>>
npm淘宝镜像过期npm ERR! request to https://registry.npm.taobao.org/vuex failed, reason: certificate has ex
查看>>
npm版本过高问题
查看>>
npm的“--force“和“--legacy-peer-deps“参数
查看>>
npm的安装和更新---npm工作笔记002
查看>>
npm的常用操作---npm工作笔记003
查看>>